Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Environ Health Res ; : 1-15, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720621

RESUMO

This study focused on using Stipagrostis plumosa for phytoremediation to eliminate total petroleum hydrocarbons (TPHs) and heavy metals (HMs) like cadmium (Cd), chromium (Cr), lead (Pb), and nickel (Ni) from oil-contaminated soil. Conducted over six months at a field-scale without artificial pollutants, soil samples were analyzed using gas chromatography‒mass spectrometry (GC‒MS) for TPHs and inductively coupled plasma-optical emission spectroscopy (ICP‒OES) for HMs. Results after six months revealed that plots with plants had significantly higher average removal percentages for TPHs (61.45%), Cd (39.4%), Cr (46.1%), Pb (41.5%), and Ni (44.2%) compared to the control group (p <0.05). Increased microbial respiration and bacteria populations in planted plots indicated enhanced soil microbial growth. Kinetic rate models aligned well with the first-order kinetic rate model for all pollutants (R2 >0.9). Overall, the study demonstrates that S. plumosa can effectively reduce TPHs and HMs in oil-contaminated soil, making it a promising option for pollutant absorption.

2.
Sci Rep ; 14(1): 5502, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448471

RESUMO

Phytoremediation is a cost-effective and environmentally friendly method, offering a suitable alternative to chemical and physical approaches for the removal of pollutants from soil. This research explored the phytoremediation potential of Alhagi camelorum, a plant species, for total petroleum hydrocarbons (TPHs) and heavy metals (HMs), specifically lead (Pb), chromium (Cr), nickel (Ni), and cadmium (Cd), in oil-contaminated soil. A field-scale study spanning six months was conducted, involving the cultivation of A. camelorum seeds in a nursery and subsequent transplantation of seedlings onto prepared soil plots. Control plots, devoid of any plants, were also incorporated for comparison. Soil samples were analyzed throughout the study period using inductively coupled plasma-optical emission spectroscopy (ICP‒OES) for HMs and gas chromatography‒mass spectrometry (GC‒MS) for TPHs. The results showed that after six months, the average removal percentage was 53.6 ± 2.8% for TPHs and varying percentages observed for the HMs (Pb: 50 ± 2.1%, Cr: 47.6 ± 2.5%, Ni: 48.1 ± 1.6%, and Cd: 45.4 ± 3.5%). The upward trajectory in the population of heterotrophic bacteria and the level of microbial respiration, in contrast to the control plots, suggests that the presence of the plant plays a significant role in promoting soil microbial growth (P < 0.05). Moreover, kinetic rate models were examined to assess the rate of pollutant removal. The coefficient of determination consistently aligned with the first-order kinetic rate model for all the mentioned pollutants (R2 > 0.8). These results collectively suggest that phytoremediation employing A. camelorum can effectively reduce pollutants in oil-contaminated soils.


Assuntos
Poluentes Ambientais , Fabaceae , Petróleo , Cádmio , Biodegradação Ambiental , Chumbo , Cromo , Níquel , Solo
3.
Environ Res ; 183: 109278, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32311912

RESUMO

The water sources contaminated by toxic dyes would pose a serious problem for public health. In view of this, the development of a simple yet effective method for removing dyes from industrial effluent has attracted interest from researchers. In the present work, flat sheet mixed matrix membranes (MMMs) with different physiochemical properties were fabricated by blending P84 polyimide with different concentrations of cadmium-based metal organic frameworks (MOF-2(Cd)). The resultant membranes were then used for simultaneous removal of eosin y (EY), sunset yellow (SY) and methylene blue (MB) under various process conditions. The findings indicated that the membranes could achieve high water permeability (117.8-171.4 L/m2.h.bar) and promising rejection for simultaneous dyes removal, recording value of 99.9%, 81.2% and 68.4% for MB, EY and SY, respectively. When 0.2 wt% MOF-2(Cd) was incorporated into the membrane matrix, the membrane separation efficiency was improved by 110.2% and 213.3% for EY and SY removal, respectively when compared with the pristine membrane. In addition, the optimization and modeling of membrane permeate flux and dye rejection was explored using response surface methodology. The actual and model results are in good agreement with R2 of at least 0.9983 for dye rejection and permeate flux. The high flux of the developed MMMs coupled with effective separation of dyes suggests a promising prospect of using P84 polyimide MMMs incorporated with MOF-2(Cd) for water purification.


Assuntos
Cádmio , Estruturas Metalorgânicas , Purificação da Água , Corantes , Filtração
4.
Environ Monit Assess ; 185(11): 9055-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23644691

RESUMO

A simple and sensitive method based on a modified hollow-fiber liquid-phase microextraction followed by gas chromatography-mass spectrometry has been successfully developed for the extraction and simultaneous derivatization of some nitrophenols (NPs) in soil and rain samples. Microwave-assisted solvent extraction was used for the extraction of NPs from the soil, while the rain sample was directly applied to the previously mentioned method. Briefly, in this method, the analytes were extracted from aqueous samples into a thin layer of organic solvent (dodecane + 10% tri-n-octylphosphine oxide) sustained in the pores of a porous hollow fiber. Then, they were back-extracted using a small volume of organic acceptor solution (25 µl; 10 mg/L N-methyl-N-(trimethylsilyl)trifluoroacetamide, as derivatization reagent, in acetonitrile) that was located inside the lumen of the hollow fiber. Under the optimized extraction conditions, enrichment factors of 255 to 280 and limits of detection of 0.1 to 0.2 µg/L (S/N = 3) with dynamic linear ranges of 1-100 µg/L were obtained for the analytes. The accuracy of the approach was tested by the relative recovery experiments on spiked samples, with results ranging from 93 to 113%. The method was shown to be rapid, cost-effective, and potentially interesting for screening purposes.


Assuntos
Poluentes Ambientais/análise , Nitrofenóis/análise , Chuva/química , Solo/química , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Líquida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA